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ABSTRACT

An analysis yielding six-degree-of-freedom
equations of motion is presented for predicting the
dynamic behavior of a general parachute-payload
system. The parachute canopy and associated air-
mass are approximated as a rigid body, and separate
equations of motion are derived for the canopy and
payload subject to the constraint of the risers and
suspension lines. The analysis determines the forces
and the response of various riser and suspension-line
geometries subjected to large displacements, under
the assumption that these lines are linearly elastic.
The equations are readily adaptable to computer
solutions and should be of interest in analyzing the
dynamic performance of lifting-parachute payload
systems.
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A MATHEMATICAL MODEL FOR CALCULATING THE FLIGHT DYNAMICS

OF A GENERAL PARACHUTE-PAYLOAD SYSTEM

By Joe D. Gamble
Manned Spacecraft Center

SUMMARY

An analysis yielding six-degree-of-freedom equations of motion is presented for
predicting the dynamic behavior of a general parachute-payload system. The parachute
canopy and associated airmass were approximated as a rigid body, and separate equa-
tions of motion were derived for the canopy and payload subject to the constraint of the
risers and suspension lines. Equations were developed for solving for the force distri-
bution in space frames composed of various riser and suspension-line geometries under
the assumption that these lines are linearly elastic. The Newton-Raphson iterative
solution was used to solve equations for large displacements, and the solution is readily
adaptable to computer solutions. The model should be of interest for analyses of the
performance of lifting-type parachutes, particularly when the six-degree-of-freedom
mass and aerodynamic properties of these parachutes have been better defined.

INTRODUCTION

The proposed use of lifting parachutes for future land landing of manned space-
craft will impose a greater requirement on computer simulations of the flight dynamics
of the parachute-payload system. Dynamic analysis requirements for the present
water-landing systems are primarily to determine that the system is stable and that the
oscillation limits during descent are acceptable for water-entry of the spacecraft.

Although full-scale simulations have primarily been used to evaluate the dynamic
performance of manned parachute systems in the past, a few attempts have been made
to theoretically predict the dynamics. According to Ludwig and Hems (ref. 1), the first
attempt to consider dynamic stability of a parachute-payload system was performed by
Brodetsky (ref. 2), but few analyses followed in the interim period to 1960. Since then,
considerable work has been done at the University of Minnesota under the direction of
H. G. Heinrich (refs. 3 and 4), by Ludwig and Heins (refs. 1 and 5), and by personnel
of a NASA contractor (refs. 6 and 7).

Most of the dynamic analyses have considered the parachute-payload system to be
a single rigid body and have linearized the equations of motion, which limits the oscilla-
tion amplitudes to small values. Ludwig and Heins employed computer solutions to



solve the six-degree-of-freedom motion, using the nonlinear equations of motion; but

their analysis also assumed a single rigid-body system.

Proposals have been made for using a lifting parachute with aerodynamic refer-

ence lengths on the order of 100 feet which would require suspension lines of 100 feet

or more in length. Since the suspension lines used for most parachute-payload systems
have a relatively low spring constant, it is possible for a suspension line to lengthen

several inches without appreciably increasing the forces or moments on the parachute.
The suspension-line geometry is usually such that the vertical component of the

suspension-line length is large compared to the lateral component. This geometry
permits large lateral displacements between the payload and parachute with only small

changes in the suspension-line lengths and thus only small changes in the forces and

moments acting on the parachute. Since lifting parachutes are designed for lateral ma-

neuvers, large lateral displacements between the parachute and payload are likely.

These displacements result because the high inertia of the parachute (which must in-

clude the apparent inertia effects of the surrounding and included airmass) will require

large rolling moments to produce a roll attitude change during yaw maneuvers, and the

momentum of the payload will be such as to produce a relative lateral displacement

during the yaw maneuver. The relative displacements will have an effect on the accu-

racy of studies which assume the parachute and payload are a single rigid body, since

the inertia matrix will be significantly affected by such displacements. This suggests
the need for considering the parachute and payload as separate, elastically coupled sys-
tems when analyzing the dynamics of a lifting-parachute system.

Another advantage of such an approach is that the aerodynamic damping of the

parachute can be considered separately. This can result in a more accurate analysis,

since the instantaneous aerodynamic angles of the parachute are calculated; thus, the

effect of the damping terms C and C. are much less than when the oscillation

""q P
center is the combined center of mass of the parachute-payload system. With the single

rigid-body approach, it is also impossible to account for the effect on aerodynamic

damping of coupling of the angular rates caused by relative rotation between the two

bodies. The two-body approach also allows the input of wind gusts acting at the actual

parachute altitude instead of at the combined center of mass. This could be important

in landing studies.

Neustadt, et al. (refs. 6 and 7) have extended the parachute analysis to include

relative motion of the parachute and payload, with the elastic effect of the risers and

suspension lines included. However, the analysis is restricted to planar motion and

only considers very simplified riser geometry.

The need obviously exists for an analysis which will predict the dynamics of a

general parachute-payload system. This paper develops a mathematical model for an-

alyzing the dynamics of such a system. The technique used assumes the parachute and

payload to be two independent rigid bodies subject to the constraints of the suspension

lines.

The forces in the individual suspension lines and risers are calculated by solving

the indeterminant space frames composed of these lines. These forces are then used to
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calculate the forces and moments acting on the parachute and payload. The six-degree-
of-freedom equations of motion of the parachute and payload are then solved using these
forces and the aerodynamic forces.

The number of individual space frames included in an analysis is limited only by
the storage capacity and time requirements for a particular computer. A FORTRAN IV
computer program developed at the Manned Spacecraft Center (MSC) provides for four
space frames of up to 10 members each.

The author wishes to acknowledge the assistance of William E. Thomas, MSC
Structures and Mechanics Division, and Theodore F. Hughes, ITT/Federal Electric
Corporation, in the preparation of this paper.

SYMBOLS

The following symbols are referenced to the lifting-parachute (parawing) system
as shown in figures 1 to 5. In general, aerodynamic coefficients are functions of both
angle of attack and angle of sideslip and are input to the computer in tabular form. If
control inputs are available, they can be accounted for in the tables.

[A] direction cosine matrix

T[A] transpose of direction cosine matrix

C^ aerodynamic rolling moment coefficient

ac
c

^ 7^p a ^v-

ac
c

^ a ^q 9^
1Trd~9^

C aerodynamic pitching moment coefficient
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9cm-
-m ^d

P S

^
ac

p _"!_
m ^q 3 2V^

C aerodynamic yawing moment coefficient

3C
C --"-n pd

P a

âc
p _"_
n rd

’ ^
C aerodynamic axial force coefficient

C aerodynamic side force coefficient
y

ac
p _y_
y a ^p 9

âc
c _y-
yr a -^2Voo

C aerodynamic normal force coefficient
z

-sc^
z a P’1
P a

^
-!5-

z^ a ^q 9 2V^
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ir

d aerodynamic reference length

{d} column matrix composed of elements dx., dy., dz.

dx^, dy dz displacement of point i with respect to initial unstressed position

dx^, dy^, dz^ displacement of point o with respect to initial unstressed position

[F] force matrix

F-, F Fg functional equations for Fx Fy Fz

Fx^, Fy Fz force components at point i required to hold frame in equilibrium

Fx Fy Fz virtual forces applied at frame junction

A A AF F F body aerodynamic forcesy z

c c cF F F body cable forcesx y z

G G G gravity components along body axesx y z

I 1 1 moments of inertia about body axis system

I,, I I products of inertia about body axis system
Ay A.ZI yz;

i arbitrary frame member

^ ’2’ ^2 fixed points on parachute with respect to parachute axis system

( 4 A

i-, ]-, k_ unit vector in payload axis system

4 t ft
in, ]g, kg unit vector in parachute axis system

[K] matrix of the spring constants

5



K. spring constant of frame member i

k current step in the iteration process

L. current length of frame member i

L. unstressed length of frame member i

^
(1.1 row matrix composed of unstressed lengths of frame members

M mass

A A A
M M M body aerodynamic moments

M c, M c, M c body cable moments

m total members in frame

n number of members from payload to junction point o

o space frame confluence point

t p\ column matrix composed of the element P.

p. axial force in member i
i

p, q, r body axis components of^roll, pitch, and yaw inertial angular
velocities w w w_

x! y! z!

q free stream dynamic pressure

R inertial position vector of payload center of gravity

R inertial position vector of parachute center ^; gravity

r. r. r. scalar components of a vector from parachute to attach points on
ix, 2’ ly, 2 iz, 2 payload in parachute axis system

r vector from parachute to payload attach point
i

5 aerodynamic reference area

t time

6



V ,,V .p V x, y, z velocity components of payload center of gravity along
x’ y’ 1 z’ A payload axes

V y, V , V x, y, z velocity components of parachute center of gravity along
x, i y, z! z, z.

parachute axes

V free stream velocity of center of gravity of payload or parachute

v- inertial velocity vector of payload center of gravity

Vq inertial velocity vector of parachute center of gravityz

X., Y., Z. coordinates of attach point i
i’ i i

X. Y. Z. original X, Y, Z coordinates of attach point i

^ l0 ^
X Y Z original X, Y, Z coordinates of point o
0 0 0

XT, y- z,-, inertial velocity of body center of gravity along body axes
B! B! B!

x_ y’_ z’_ inertial acceleration of body center of gravity along body axes
B! B! B!

a., ;3., y. X, Y, Z direction cosines of frame member i in parachute axis
1 1 1 system

[r] 3 by 3 transformation matrix for transforming from axis system
of body 1 to axis system of body 2

[r]’1 transpose of [r]

r. elements of matrix r
i,]

AX. X. X dx
i i Op o

AY. Y. Y dy
i i Op ^

AZ. Z. Z dz
i i Op o

A0 total angle change of frame member i from unstressed position
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6 correction to previous estimate in Newton-Raphson iterative
solution

6 correction to previous estimate of frame member i
i

^ ., ^/., 0. angles between frame member i and parachute X-, Y-, and
1 1 1 Z-axes

e i//. 0. original angles between frame member i in unstressed position

^0 ^0 ^0 and parachute X-, Y-, and Z-axes

P., T^ fcos ^ cos ^ V /cos ^ cos ^ V /cos <^ cos ^ ^p p. p. X, Y, Z coordinates of payload attach point of riser i in payload
ix, 1 iy, 1 iz, 1

g^gg system

P. P- oP- 9 x’ Y’ Z coordinates of parachute attach point of suspension line i
ix, 2 iy, 2 iz, 2

^ parachute axes system

( p2+ T2+ c2) column matrix composed of the elements p, T, and CT (eq. (21))

p. vector from center of gravity to riser or suspension-line attach
1 point

(f) 3 by 3 matrix composed of elements of the Jacobian

<A elements of the Jacobian
i]

^ 0, ^ relative Euler angles of body 2 with respect to body 1, applied in

the rotation ^, 6,~cf>

^>,~e,^ time rate of change of ~^, 9,^

w o> a; angular velocity components of payload about payload axes
x, 1’ y, V z, 1

a; ,w n, <^ angular velocity components of parachute about parachute axes
x, 2 y, 2 z, 2

hi angular velocity vector of payload

w angular velocity vector of parachute

~w ,’w .,’w angular velocity component of payload transformed to parachute
x, 1 y, 1 z, l

g^gg

8



u w w inertial angular velocity components about body axes p, q, r

(1} w u time rate of change of velocity components about body axes
^l y; \

ANALYSIS

Equations of Motion

The basic approach to this analysis is to assume that the parachute can be ap-
proximated as a rigid body, and then to calculate the dynamics of the parachute and
payload separately, subject to the constraint of connecting lines. Six-degree-of-
freedom equations of motion can be written for each body if the forces and moments
caused by aerodynamics as well as the forces and moments in the connecting lines are
known. Integration of these equations will yield the motion of each body.

The three translational equations of motion for the center of mass of a rigid body
are

( \ A C\ ( \ ^ ^\ \ + F. G. 0 -r q x^

^ ^ l^ ^ -^y0^ V r -P ^B ^
\ ^ ^z0 z -I P \
\ } \ \ ^

The aerodynamic forces are determined by

A ^F C q S
x x

^ [s^j^pN^

^ ^c^c^]^

9
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The rotational equation of motion about the body axis is determined by

/

(w \ ~1 -I -1
-1 M

A
+ M

0
x, xx xy xz x x

w -1 I -I M
A

+ M
c

< y f yx yy yz y y

w -I -I I M
A

+ M
c

z _zx zy zz^ z z_
/ \\

0 -r q ^ ^xy ^xz %
r -p ^yx ^y ^yz ^y^ ^

(3)

_q P 0_ -^ -1^ 1^ o,^
v //

When the aerodynamic reference center coincides with the center of mass, the body
aerodynamic moments are given by

^ ~y\[^y\{^\^ ’1^

^ ^s^s^)^ (4)

^ ^S^c^) ,^

Riser and Suspension-Line Forces

With the aerodynamic forces and moments known, the problem now is finding^ the
forces and moments caused by the connecting lines. For this, consider a vector r^
(from the parachute to the payload as shown in fig. 1) which results in the following

equations as developed in reference 8.

r^ R^ + p^ Rg pg (5)
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^
The time rate of change of r.. is given byy -W =^l Rl + pl R2 p2 (6)

The vector p, is a vector fixed in the

payload and can be expressed in the pay-
load referenced frame as

^ X^ + Y^ + Z^ (7)

By taking the derivative of p, with

respect to time

p^ X^ + Y^ + Z^ cJ^ X p^ (8)

v! Similarly

^i

Pg ^ X p^ (9)
Figure 1. Vector diagram of parawing

configuration.

The time rate of change of R and R is equal to the inertial velocity of points 1
i.

and 2.

R^ v^
(10)

^2 ^2

By combining equations (6), (8), and (10)

^l ^l v2 + i’}l x pl w2 x p2 (11)

11



The time rate of change of r. also can be expressed in the parachute reference frame

as

^l rlx, 2i2 + rly, 2h + rlz, 2k2 (12)

By equating the expressions for r-

"Ix, 2^2 + ^ly, 2^2 + ^Iz, 2^2 V1 V2 + W1 X P1 U2 X P2 (13)

The vectors Vn and cJn x pn are already expressed in the axis system of the para-
z ^ z

chute. Let [r] be a transformation matrix wliich transforms vectors from the axis

system of body 1 to the axis system of body 2. (The equations for determining [r]
are given in appendix A. Now

^Ix, 2^2 + ^ly, 2^2 + ^Iz, 2^2 (^x, 2 "y, 2?2z, 2 + "z, 2^y, 2)^2
(-vy, 2 a;z, 2p2x, 2 + ct;x, 2p2z, 2)^
(-^ "x^y^ ^y^x^
+ ^11(^ l ^y, 1^, 1 ^, 1^, 1)
+ ^2^y, 1 + "z, l^lx, 1 ^, 1^, 1)

^IS^z. l ^x. l^ l ^ lFix, !)] ^
+ ^l^x, 1 + ^y, l^lz, 1 "z, l^ly, l)
+ ^22(vy, 1 + "z, lplx, 1 "x, l^z, l)
+ M^, 1 + ^, iPly, 1 "y, l^lx, l)] h
+ ^1^, 1 + "y, l^z, 1 "z, l^ly, l)
+ ^32(vy, 1 + ^z, l^lx, 1 "x, iPlz, l)

" ^(^ l ^x, !^, ! ^, !^, !)] ^ ^
12
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Equating the coefficients of {y |n, and ^g results in the following three scalar equa-

tions for the time rate of change of the components of each vector from the parachute
to the payload.

rlx, 2 ^x, 2 "y, 2^z, 2 + "z, 2^y, 2

+ ^ll(v^, l + ^, 1^, 1 ^, 1^, 1)
+ ^12(vy, 1 + "z, l^x, 1 ^x, l^lz, l)
+ M^, 1 + ^x, l^ly, 1 "y, l^lx, l)

^ly, 2 ^y, 2 "z, 2^x, 2 + ^x, 2^z, 2

+ ^l^x, 1 + "y, l^lz, 1 ^z, l^ly, l)
+ ^y, 1 + "z, l^x, 1 ^x, l^lz, l) (15)

+ ^23(vz, l + ^, l^ly, l "y, l^lx, l)

"iz, 2 ^z, 2 "x, 2^2y, 2 + "y, 2^2x, 2

+ ^QifV + cij ,p, (^ iPi ^31^ x, 1 y, l^lz, 1 z, l^ly, 1;

+ r’on/’V + CL) iPi ^ P-. -,^32^ y, 1 z, 1’lx, 1 x, l^lz, l)

+ ronfv + c^ -pi c<; ,p. ,^33^ z, 1 x, l^ly, 1 y, l^lx, l)

The integration of these equations yields the displacement of each point on the payload
with respect to the parachute reference frame.

If the two points were connected by individual elastic lines such as r in fig-

ure 1, then the resulting forces transmitted to the parachute and payload are deter-
mined by multiplying the spring constant of the line by its elongation. The dynamics
of the system are then determined. The equations of motion of both the parachute and
payload are integrated to yield the velocities and angular rates which are used to deter-
mine the elongation of the connecting lines, thus giving the forces in these lines.

13



In most systems, however, the para-^^-------====^3^^^
chute and payload are not connected by indi- >^ ^^^:::::::::?:^?-\
vidual lines but by space frames composed //^"’^-^’’Y’""^.- \ \
of suspension lines with risers or harnesses r^’^ ~’^V--< ^V^"^- \
connecting the confluence point of the sus- \ \ \\\~~\^\1’1 ^V’^N’ ’^7
pension lines to the payload (fig. 2). In ^\^ ^\ ^ ---^ /y"-^/ /
order to accurately obtain the system dy- \^ ^\ \ F TT^s /\ /
namics, it is necessary to determine the y\ ^ \ // // /
force distribution in these space frames. \\ \\\ // // /

Space Frame Forces \\\\\ // /
To solve for these forces, consider \\’^i ///

the typical space frame as shown in fig- \^1 \j //
ure 3. Points 1 to 3 represent attach points \^l l^y
on the payload, and the displacement of ^ w
these points with respect to the parachute ^L f
can be found by integrating the time rate of i\

change of a vector from some arbitrary JV^/
point on the parachute to the payload attach /] ^point. Points 4 to 8 are attach points of the \^^
suspension lines on the parachute. One of

3 suspension-line geometry
the basic assumptions of the analysis is tha

^ parawmg configuration.
the canopy maintains a rigid shape such that ^ & &

the skirt of the canopy, where the suspen-
sion lines attach, maintains a fairly con- ^--^

’2

stant shape. A review of flight test films ^ >^
indicates this to be a valid assumption for \^ ^ a
most canopy shapes over their normal 4 W mj ^ T
angle-of-attack range. Small movements i^ \ /
of the canopy attach point will have little \ \ /
effect on the analysis because of the long \ \ /
suspension-line lengths and the low spring \^ \ /
constant of the suspension lines. Thus, the \ \ /
parachute attach points can be assumed to \ \ / /
be fixed with respect to the parachute axis ^ \ / /
system. To reduce computations, the para- ^ \ / /
chute suspension lines are represented in \\ //
the analysis by a reduced amount having an \Uy
equivalent spring constant. The method o

developed, however, is applicable to any ,/ \
number of suspension lines and is limited / \
only by the capacity of the computer used / \,
in the analysis. / \

For a given frame, the forces in the

members caused by a small displacement 2

of the payload attach points can be deter- Figure 3. Riser and suspension-line
mined by one of the methods of indetermi-space frame.
nant structures, if the frame members are

14



considered to be linearly elastic. This approach assumes that, at any instant of time,
the frame is in static equilibrium. This is a valid assumption as long as the frequency
of oscillation between the parachute and payload is fairly low so that the acceleration
of the frame does not prohibit its maintaining near-equilibrium conditions. The small-
displacement theory of indeterminant structures is not valid, however, because the
dynamics of the parachute payload system are such that the displacements of the
payload attach points with respect to the parachute axis are not always small.

Forces in Space Frames Subjected to
Large Displacements

An analytical technique is now developed which solves for the force distribution
in the space frame subject to large displacements. This method follows that developed
for small-displacement theory by Argyris (as discussed in ref. 9) but is expanded to
incorporate large displacements. The following analysis considers a limited number
of frame members, but can be readily expanded to incorporate any number of members.

Let points 3 to 5 of figure 4 repre-
sent points on the parachute which are ^____^
fixed with respect to the parachute axis ^ \-
system iy, | b. Points 1 and 2 rep- JMf-

2 f1
\ ^ /resent points on the payload which undergo \ 7 /

displacements dx., dy., and dz. with re- \ / ’i,,,z,’ ^
spect to their initial position in the para- \ / /
chute reference frame. The displacements \ / i-i/
of point o from its original position are \ / / \i \
dx^, dy^, and dz^. \ // (lo>^’^^

In the parachute reference frame, let / !\ / \^/^"’’
Fx,, Fy and Fz. represent the three / F’0 \ sciwmaiic or d.recimnai

components of force at each movable point i/ \ c’"’ ’’’’~^~" "
required to hold the frame in equilibrium ^/-T -F>1 \, ,-,
when it is displaced from its unstressed Fvl \ ^--^2 co,^=-^_=
position. Let a., /3., and y. be the di- r’1 Fl2’

1 1 1 \ Cos .1.^ -^rection cosines of frame member i in the Fz2

parachute reference frame and P. be the

axial force in member i. The forces Fx Figure 4. Space frame equilibrium
i’ forces.

Fy^, and Fz. can then be written in terms

15



of the axial forces and direction cosines as follows

^Fx- "o- 0 0 0 0

Fy- j3 0 0 0 0

Fz. y 0 0 0 0 ’P^
Fx 0 0’g 0 0 0 Pg

Fyg 0 ^2 ^ (16)

Fzg 0 ^ 0 0 0 P^

^o -"1 -^ -"S -"4 -^ p^

^o -^1 -^2 -^3 -^4 -^5

^^ -Jl ^2 -^ -^ -^
^-^ To solve for the force P. in terms of the

, large displacements, consider figure 5. A
’’.-’>\ single member in planar motion is shown,
^.V^"^)2 ^u^ ^ne thGQi’y readily extends to several

"2"i ^ "^ ^^^ members in three dimensional space.

Y’"^ / /":^s^Lo’l"a"’ The axial force in member i is a

/ L"/ / ^^ function of its linear spring constant and

/ / / /\ elongation; thus

/ ^^ ’ Pi ^i ^iS^^^i) ^!^08 ^)

^^ + dy^^os ^ ) dy^ (cos ^ )]
\v’’^

PL. (1 cos A0)~] (17)
L ^ J

Figure 5. Large displacement diagram.
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In matrix form, equation (17) becomes

( \ \
dxg

P^ [K^< [pos ^)(cos ^)(-cos ^)(-cos ^)]< 2. ^ [(l cos A0)] (18)

dyiI v / J
The total angle change of frame member i from its unstressed condition is determined
from

1 2 9
1 COS A0 /COS ,. COS ^. } + /COS 1^. COS ^. \ (19)

\ l ^^ \ l lo}_
By making this substitution and extending equation (17) to the three dimensional frame
of figure 4

P^ ^ ’\ ^ ^ 0 0 0 -^ -^ -y[
P2 K^ 0 0 0 0 ^ ^ ^ -a^ -^ -^
?3 Kg 0 0 0 0 0 0 -Og -^3 -yg

?4 ^ 0 0 0 0 0 0 -^ -^ -y^

P^ K^ _0 0 0 0 0 0 -.5 -^ -y^

/dx^
dy! 7 ^ 2 2 2^^1 -1 -i )

/ 2 2 2\

dxg ^2 - ^ ^- ^ J
dy2 ^ L3Q(p32+ T32+ a32) (20)

dz, / 2 2 2’\
2 ^^ + T4 ^ .l

^o / 2 2 2\
1-5 ?5 + T-5 + a, J

dy V /
o -’ /

dz^^ /

17



By substituting for P in equation (16), the force matrix can now be symbolically
written as

\F} [A] [K]^{d} j^{Lo}(p2 + r2 + a2)J (21)

Thus, it is seen that the forces required to hold the space frame in equilibrium for a

given displacement can be expressed in terms of the displacements of the points where

the forces are applied and the original length and direction cosines of the frame mem-
bers.

Consider again the frame in figure 4. Points 1 and 2 are the payload attach

points, and external forces are required at these points to displace the frame.
Point o, however, is an interior point in the frame and no external forces are applied
here. Thus, Fx Fy and Fz are virtual forces and vanish when the frame is in

static equilibrium.

Performing the matrix multiplication required for finding Fx Fy and Fz

yields the following three equations for a frame with m total members and n mem-

bers from the payload to confluence point.

\

FXo 0 -g(K^dx^ + K^^ + K^y^)

- K^^ + K^^ + K^y^ +\K^L^2 + ^ + a^2)

FYo -Z^Wi^i + ^i^i + Wi^i)
(22)

-^ glWi^o + ^i^o + Wi^o +! Wi^i2 + T!2 + ai2)]

F^o -p^i^i +Wi^i + ^i’^i)
m^ 2 1 / 2 2 2\

+ g K^^y^ + K^^y^ + K^y^ dz^ + 3 K^^ + r^ + aj

18



Now assume that points 1 and 2 are given known displacements dx., dy., and dz.. The parameters a.,

^i’ ^ pi’ ri’ and ^i are an functions of the variables dx dy and dz and equation (22) yields three

equations of the form

y.___________^i V ^S_________
F1 0=

^ (- \ - )2-^ \ ^)2- (V \ ^)2
^(Vy^ V^i ^VV^i V^i+

(- \ -o)2 - (- \ ^o)2 - (- \ - )2
+

(- \ ^)2 . (^ ^ ^)2 . (Z, ^ ^m K./X. X dx \ dx K./X. X dx \/Y. Y dy \dyy l\ t o 0) < o "A o ’’)
" (x’ \ ix)2 * (Y- \ ^ * (z. \ "S2

*

(xl \ h0)2 t (Y- Yo. ^ + (z- ^n l^)2
^l ’1,. ^, ^ ^, ^’ Sft -^ l’.)^

<(;’, \ -.)2< fr \ ^)2* ^ S a^.[ t" ^(x, ^ dx^ , (v, ^ )’ (z, ^ ^)
r__("’ s "’)__ (\- \)

l yc. ^ ^^^ ^o ^)2 ^2- ^ ^)2 ^.-^(v^vv
/_____C S ^)_____.____(\ \)
yc. ^. ^ - r. ^. ^ - e’ s ^)2 V(x. \)2t(Y, Y.)2t (^- z.i
/____(’- S ^)_____ (\- \)
Ves v^T’ v^^ v"")2 Vc.. ^,)2 ^^. 1’.)’ ^2..- ^)2 (23)
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Thus, there are three equations in the three unknowns dx^, dy^, and dz^. However,

these equations are very nonlinear in the three unknowns, and their solution requires

the use of an iterative method. The iterative substitution method of Gauss-Seidel was

first attempted, but failed to converge for large displacements.

Newton-Raphson Iterative Solution

The Newton-Raphson method was next used and very good convergence for all dis-

placements was obtained. Reference 10 explains the principles of the Newton-Raphson

method, and its application to the present problem is explained below. Let the equa-
tions for Fx Fy and Fz be denoted as the functions F^, Fg, and Fg, or in

matrix form as { F}. Define as ^ the 3 by 3 matrix composed of elements of the

Jacobian

3/F F F \
\ 1 2 ^ (24)

a(dx^ dy^d^)

Then

^11 ^12 ^13’

^ ^21 ^22 ^23 (25)

^31 ^32 ^33_

The determinant of [0], is the Jacobian of the system evaluated at step k. Equations
K.

for all F terms and all 0 terms are given in appendix B. The equations in appen-
dix B were obtained by hand calculation and were later checked with a computer pro-
gram using the FORMAC computer languages as described in reference 11.

Now assume that initially at step k, dx dy and dz^ are known. If the pay-

load now experiences an additional displacement, the new values of dx^, dy^, and dz^
can be computed as follows.

Let

6dx dx
o o

{6 6dy corrections to previous values of dy (26)

5dz^ dz^
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Then by the Newton-Raphson method

dx) dx) ^O
dy^ dy^ + 5dy^ ^d}^ (27)

dz dz 6dz
o o o

k+1 k k

where

6dx^
Sdy^ -[^k^^k (28)

6dz
0

k

^o
The matrices [0], and FL are evaluated using the values of dy at step k.

K. K 0

^0
Using the new values of {d\, the process can be repeated until the solution con-

verges as evidenced by the residual of the functions approaching zero.

The Newton-Raphson method converges rapidly, usually requiring only three or
four iterations for a typical 10- to 20-member frame. The initial approximation for
{d\, is taken as the unstressed position of the junction, and subsequent approximations

are taken from the position at the end of the previous integration step. In general,
these are good approximations and are a factor in the rapid convergence of the Newton-
Raphson method. The primary problem is determining the partial derivatives of F},
but once they are found, the equations can be adapted to handle any number of frame
members as long as only one junction exists per frame. Equations for the partial de-
rivatives are given in appendix B and are valid for any frame so long as only one con-
fluence point exists in the frame.

After the displacements of point o are found, the forces in each frame member
can be determined by the matrix operation of equation (20).

{P} ^^^^} ^^(p2^2^. ^. (29)
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Since the direction cosines of each frame member in the parachute axis system
have been computed, it is possible to determine the force components of each member
in this system. The force components of the frame members attached to the payload

T
can be found by multiplying by the transformation matrix [r] If these force compo-
nents are now multiplied by the moment arms from the parachute and payload centers
of mass, the moment contributions caused by the frames can be calculated. These
forces and moments can now be added to the aerodynamic forces and moments to cal-
culate the six-degree-of-freedom motion of both the payload and parachute.

CONCLUDING REMARKS

The mathematical model as presented will permit a more detailed analysis of the

flight dynamics of general parachute-payload systems than has been possible in the

past. A particular advantage of the two-body approach over a single rigid-body analy-
sis is that the aerodynamic damping coefficients are much less critical because of the
large distance between the canopy center of gravity and the combined canopy-payload
center of gravities. In the single-body analysis, this distance is combined with the
angular velocity of the system to give the induced velocity term necessary for damping
equations. In the present analysis, damping coefficients have less effect because the
induced velocity of the canopy is calculated in the equation of motion. Since damping
coefficients are by far the most difficult to determine in wind tunnel testing, the advan-

tage of using this method is obvious. In addition, the two-body approach allows relative

motion between the parachute and payload which can result in significant changes in the
inertia matrix of the equivalent single rigid body. The single-body approach does not
account for these inertia changes.

The mathematical model as presented has been programed in FORTRAN IV and V
languages for the IBM 7094 and Univac 1108 computers. The qualitative results ap-
peared very good, but lack of experimental data prevents a complete evaluation of the
program. Although studies are currently underway to determine aerodynamic and mass
properties of lifting parachutes (refs. 12 to 15), as yet, they have not been defined well
enough to have complete confidence for use in six-degree-of-freedom simulations. A
program listing of the model will be supplied on request.

Manned Spacecraft Center
National Aeronautics and Space Administration

Houston, Texas, July 12, 1968
961-21-30-09-72
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II

APPENDIX A

EQUATIONS FOR [r]

The transformation matrix [r] which transforms vectors from the axis system
of body 1 to the axis system of body 2 is determined from

(cos ~6 cos ip) (cos Q sin i^) (-sin 1))

rri (-sm x? cos^f> (cos (f> cos ip (sin (f> cos ~0)
+ sin <fi sin ~Q cos ip) + sin <? sin 9 sin i^)

(sin i^ sin <?> (-sin (f> cos i^ (cos <^> cos 0)
+ cos <? sin 0^ cos ij^) + cos <? sin 0^ sin ip)

The angles ^, 0, and i^ are the relative^ Euler angles of body 2 with respect to
body 1 applied in the order of rotation ip, 6, <f>. These relative Euler angles are deter-
mined by integrating the equations

^ (^x, 2 ^x, l) + tan^y, 2 "y, l)8111 ? + (^z, 2 ^z, l)008 ^] (A2)

^ ("y, 2 "y, l) cos ^ ("z, 2 "z, l) sm ^ (A3)

^ [(^y, 2 ^y, l)8111 ? + (^z, 2 "z, l)^5 ^ cos e (A4)

where

c^ ^X, 1 X, 1

w [r] <^ (A5)
y, l ’- y, l

0) Cl^
z, 1 z, 1
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APPENDIX B

EQUATIONS FOR EVALUATING ELEMENTS OF THE JACOBIAN

E" /K^AX^ K^AY^ K^AZ^F- -------n---- +--------0---- + --------0-----’ 1,1 \ L!2 L. L! /

K^2^ K,AX,AY,dy^ K,AX,AZ,dz^ ^^iy 3

^^^-- "--^--- ’ ^2---
+-^--^ "i "J

(Bl)

S"/K^AY^ K^AY^’dy, K^AZ^\
^-^^-^- --^-TT- J

K,AX,AY,dx K,AY^dy^ K,ATAZ^^ "^-o/ 2 2 2\- l^ ---^--- ^ -^-- ^---^--- +

^^ -i -J
i=l 1 i i J

(B2)

E"/K^X^Z^ K^AZ^ K,AZ^dz\
F3 -.A-^2- +---L7- +

^ ^2 K" A7 L

K^AZ^ ^A^AZ^y, K^ dz i i ip ._ ,

^ ---T-2--- + ----^-~ +~2-- + -2L--[pi + Ti ^i )
i^_ ^ ^ s 1 J

(B3)
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E" /2K^AX^ 2K^AX^d^ K^AY^ 2K^AX^dy^AY^
011 L 2 ^4--- ’’’^T^"" ---L 4----

i=l \ ^ Li ^i ^
K.AZ.dz. 2K.AX.2AZ.dz.\ ^^ 2K.AX.dx^

+ \ 2
1- ’ \ 1 1 r Z^ \2Li ^ / i=l ^

2K.AX.3dx K.AY.dy K.AX.2 2K.AX.2AY.dy K.AZ.dz
1 1 0 1 1 -0 1 1 1 1 1 -0 1 1 0

+ 4 9 + 9 + 4 ~9
S h

2K^AX^A^dz, ^i 3 3 ^S/ 2 2 2>>
+ -----^---- ^-(^ + T! + (Ji ) +-----^-[pi ^i ^i )

Li 1 ^i

^ih AX AY /AX 2 \ O AX AZ
+ ---i--- ^-^ + Pi -^- -!- 4- 3 (B4)

J-J. 1 0 ll 0 -L’. 0
i L. \ L. i/ L.

i \ i / i

S"/K^AX^dx^ 2K^AX^AY^dx^ 2K^AY^ 2K^AY^dy^
<?)22 \ ^^~ ----L 4---- +

L 2 ---L^~
i=l \ ^ ^ ^ ^
K,AZ^z^ 2K^AY^AZ^z^ ^ 2K^AY^dy^ K^AZ^

+ r2" r ^ 1 + ^ r ^ ~r2L^ L^ y ^ L^ L^

K.AX.dx 2K.AX.AY.2dx 2K.AY.dy K.AY.2
1 1 0 1 1 1 0 1 1 0 1 1

9--- + ------4----- -----9--- + 9

h

2K^AY^AZ^, ^1^ 2 2 2^ ^^^O/ 2 2 2\

+----^4---- -2L^-^i ^i ^i ) 4-

^
3 ^ ^i ^i )

^^^i. AX.AY. /AY.2 \ AY.AZ.
+---[--O Pi^^ + ri{--5- -^L]+ ai--L^l (B5)

J-l. 1 0 ll 0 LJ. 1 0
i L. \L. i/ L.

i \ i / i
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," / 2K^AX^AY^ K^AX^ 2K^AX^Y^dy^ 2&AX^AY^&Z^dz^
^ Lf[ ----^---- +^^ ---^---- -----^-----j

i=l \ i i i i /

E"1 2K^X^AY^ K^AX^ K^AX^ 2^AX^Y^dy^
+ .. ---L^------.T’"^’"^^^AX^Z^ K^

L
4 2L.3 \ 1 1 1 ^i i

^^i1-! AX AY /AY 2 \ AY AZ

-^--"^---^ -i -^ ^ ^i ---T2 (B6)
i L. \L. l/ L.

l \ l / l

^" /fc.AY.dx. 2K.AX.2AY.dx. 2K.AX.AY.2dy. 2K.AX.AY.AZ.dz.\X^l i l l 1 1 i i i i i i 1 1 1 1 il^21 2^ ^
2 ---, 4---- ---- A---- ------ 4----]

i=l \ S ^ h h

Y^ ^^i^o ^i^i 2K^^2AY^ 2^AX^Y^dy^
+ / j ---2-- +----2-- +------4--- + ------3---x ^ T T T

i=l L! S Li ^i

2^AX^Y^AZ^, ^^i^lS
3 3

+ -----i + --2, 3---(Pi ^i ^i )
h 2L^

^^i^,, /AX.2 A AX.AY. AX.AZ.
+ --I^ 4^ -Il + Ti --4--l+ ffi ---rl (B7)

Ll. ll I-’- I I
1 ^\^ l] ^ ^
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^^ / 2K.AX.AY.AZ.dx. 2K.AY.2AZ.dy. K.AY.dz. 2K.AY.AZ.2dz.\
^23 2^r ^--. 41 ’ 1- ’ ’4 1 1+ ’ 2

1- ’ ’4 ’
i=l \ S Li Li Li /

E"1 2K^AY^AZ^ 2K^AY^AZ^ K^AY^ K^AY^AZ^
-----L^----- +---L^----- L 2 +

L 2
i=l Li Li Li S
iv AV A.7 2 K.AY.AZ.L.
2^AY,AZ, dz l i i l

+ ------4----- + ------3---(^ -’- ’’i + a\ }
L 2L v 1 1 1 /

l l

K" AY T / *? \
i i i AX.AZ. AY.AZ. /AZ. \

+-L-OPi--^l+Ti^^ + 4-^- 1L} (B8)
T 1 T :l\ T ^i1 h Li V1-! 1/

S"/K^AX.dx. 2K.AX.AZ.2dx. K.AY.dy. 2K.AY.AZ.2dy.
^33 [ 2 ’ ’4 ’ 1+ ’ 2

1- ’ 4 ’
i=l\ ’’i Li S Li

2K.AZ.dz. 2K.AZ.3dz.\ ^^ K.AX.dx 2K.AX.AZ.2dx
1 1 1 1 1 1 \ 1 1 0 1 1 1 0+ 2 --, 4--- + 2^ --2-- + ----4----
^ L! / i=l ^ h

K^AY^y^ 2K^AY^AZ^dy^ 2K^AZ^z^ &AZ^2 2K^AZ^dz^
---2-- + -----4---- ----2-- + --2- + ----3---
S L! S L! ^?

K L. K.AZ^L.
0/ 2 2 2\ z x ^y 2 2 2\

-or--IP. + T. + or. +-----K--(p. + T. + 0.

2L^ V i i i / g^
3 \f i i i /

^^i^., AX.AZ. AY.AZ. /AZ.2 ,\
-^^I--0^^-^ ^! ^^-1^! -^- -!1 (B9)

J-l. 1 0 I 11 L’.
i L^ L^ ^L^ iy

29



^/ 2K.AX.AZ.AY.dx. K^AZ^dy^ 2K^AY^AZ^ 2K^AZ^AY^dz^
’^S"^"’"^ "^" ""-^ /

E111 2K AX^AY^x, K^AZ^ K^AZ, 2K^Y^Z^
+ -------T----- ----9-- + ----g-- + ------2----L^ L!2 L!2 L?

^i^i2^^ ^^^o / 2 2 2\,
-----4----- . ---or ^--^i - ’i ^i )

S ^i

^^i1^ p.AX.AY. /AY.2 \ AY AZ
+ , O J-^ ^^--^- 1 }^,---^- (B10)

^ T^ ’^ N ’^i^

^ / 2K.AX.2AZ.dx. 2K.AX^AY^AZ^ K^AX^ 2K^AX^AZ^dz^
013 l? l’^i^ -?---^r -^r~)

Em 2K^AX 2AZ dx^ 2^AX,AY,&Z,dy^ K,AX,d^ K^AZ,

+,. ^^-+-?- ^r’^""2 K AX.AZ.L.
2K.AX.AZ. dz i i 1 ir, / 9 o\. ----^-^ . (P,2 . ^2 . a,2)

L^ 2L^

^^iS. AX.AZ. AY^AZ /AZ 2 A
+ -^opi-^ + Ti -t^ + ffi -:^ ^ (B11)

1 ^ ^ ^i V
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I

-" /K.AZ.dx. 2K.AX^AZ^ 2K^AX^AY^AZ^ 2K^AX^AZ^dz^\
^01 ^ ----q- -----4---- ------4---- 431 ^A L! L! L! ^ /

E"1 K^AZ^ ^AX^AZ, 2^AX^AZ^ 2K^AX^AY^AZ^y^
+ ----9-- + ----o-- + ------4---- + -------4-----

i=l L! L!

2K.AX.AZ.2dz. KiAxiA’ziLin 9 9 ?\
1 1 1 0 ^’ ", ", ^+ ---^----+ ---^i;^-^ + T! ^l )

i i

KiAziLi. /AX.2 A AX.AY. AX.AZ
0 1 1 1 1 1 1 {T31’)\

+ ---I--- ^ --S-L- ^i ---^" ’1’! "! 3" )
l ^^ l/ ^ ^

where

Ax! x! ^Q ^o (B13)

AY! ^ \ ^o (B14)

and

AZ. Z. Z dz (B15)
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